Для выявления источника выброса рутения-106 нужна независимая комиссия

Для выявления источника выброса рутения-106 нужна независимая комиссия

Многие природоохранные организации не согласны с выводами специальной межведомственной комиссии, сформированной «Росатомом», которая заявила о непричастности госкорпорации к недавнему выбросу радиоактивного изотопа рутения-106. Заведующий лабораторией радиоизотопного комплекса Института ядерных исследований РАН, доктор химических наук Борис Жуйков предлагает 16 тезисов для обсуждения сложившийся ситуации с рутением-106:

1. На производственном объединении «Маяк» регулярно перерабатывают отработавшее ядерное топливо (ОЯТ) методом остекловывания в объеме примерно 400 тонн в год с активностью около 30–50 млн кюри в год, т. е. примерно (1÷2) х 1018 Бк).

2. Количество рутения-106, образующегося на момент окончания облучения в реакторе ядерного топлива, составляет 20 тыс. TБк (терабеккерелей) на одну тонну урана, что составит примерно 200 ТБк (около 5 тыс. кюри) через 7 лет выдержки — это соответствует усредненной оценке объема выброса по данным IRSN 100–300 ТБк. Среднее время выдержки ОЯТ перед радиохимической переработкой на заводе — 6–10 лет.

3. В настоящее время запущена и действует электропечь ЭП-500/5 для остекловывания ОЯТ. Порядок ее сооружения и запуска вызывал ряд нареканий. Эксплуатация некоторых из предыдущих печей аналогичной конструкции ЭП-500 была прекращена из-за образовавшейся течи.

Рис. 1. Схема остекловывания высокорадиоактивных отходов на ПО «Маяк» с электропечью ЭП-500 (libozersk.ru/pbd/Mayak60/link/126.htm). В схеме предусмотрен специальный модуль для очистки от летучего тетраоксида рутения RuO4, расположенный уже после фильтров грубой и тонкой аэрозольной очистки

4. В технологии переработки ОЯТ на ПО «Маяк» выделяется рутений-106 в газообразной форме RuO4, и отходящие газы очищаются от этого соединения специальным модулем (рис. 1). Согласно приведенной схеме, аэрозольные фильтры грубой и тонкой очистки поглощают все радионуклиды, кроме рутения-106, а также труднодетектируемого криптона-85, так как последние находятся в газообразной форме. Насколько эффективна и надежна работа специального модуля для очистки от RuO4 и как она контролируется? Имеется ли резервная система вентиляции, как это принято на других подобных производствах (см. ниже)?

5. Аналогичная система очистки от летучего рутения-106, по-видимому, действовала при переработке ОЯТ во Франции на заводах компании Cogema (сейчас — Areva NC) в La Hague. 18 мая 2001 года на заводе R7 произошел инцидент с выделением в атмосферу рутения-106. При этом из-за блокировки одного из клапанов модуль очистки от RuO4 не был задействован в течение часа. Причем основная вентиляционная система отказала, а сработала только резервная система. Активность в выбросе оценили в 4,5 ГБк. 31 октября 2001 года произошел новый инцидент на заводе Т7 с выбросом рутуния-106 в результате попытки прочистить вентиляционную систему. Объем выброса рутения-106 точно не известен, но оценивался в пределах 0,2–10,0 ГБк, т. е. по крайней мере в 10 тыс. раз ниже, чем оценка нынешнего выброса.

6. Таким образом, утверждения «выброс рутения-106 не может быть связан с деятельностью АЭС, поскольку там рутений-106 как продукт деления присутствует в смеси с другими изотопами» и «полетел бы не один рутений» совершенно неверные. Верно лишь то, что выброс чистого рутения-106 не может произойти непосредственно от работающего реактора, а связан с переработкой ранее использовавшегося ядерного топлива.

7. Не вполне ясна эффективность контроля выброса газообразного соединения рутения-106 на трубах с учетом вероятного его постепенного выделения. Обычные фильтры могут не поглощать достаточно эффективно RuO4. Если же датчики регистрируют активность радионуклидов в режиме «пролета», то тогда возникает вопрос о пределе чувствительности, в особенности при наличии фона от бета-активного криптона-85, который неизбежно выбрасывается при переработке ОЯТ и вообще не улавливается фильтрами. Причем через 7 лет после извлечения ОЯТ из реактора криптона-85 должно быть как минимум в 30 раз больше, чем рутения-106. Криптон-85 не имеет гамма-излучения, но его присутствие может привести к большой загрузке датчиков, если они регистрируют и бета- , и гамма-излучение или недостаточно экранированы от тормозного излучения. Наиболее надежным было бы использование полупроводниковых гамма-спектрометров. Криптон, будучи более летучим, обычно выделяется быстрее, чем рутений. Однако в массивных образцах скорости выделения определяются в основном диффузией и могут быть сравнимы для криптона и рутения. Другие источники фона также должны были быть проанализированы.

8. Таким образом, показания существующих автоматизированных систем контроля именно при такого рода аварии с выделением газообразного продукта представляются недостаточно надежными.

9. Возникает вопрос, какими были порядок и технология пробоотбора воздуха для проведения контроля на местности? Как указывалось выше, газообразный RuO4 в значительной мере не поглощается фильтрами, обычно используемыми для пробоотбора. Это могло привести к сильному занижению данных по загрязнению в воздухе. Эффективность работы фильтров для определения рутения-106, очевидно, зависит от удельной активности рутения-106, характера формирования аэрозолей и, соответственно, метеоусловий, высоты над местностью и т. д.

10. Спорно интерпретировано отсутствие сильного загрязнения рутением-106 поверхности территории вблизи «Маяка». Ссылки на другие аварийные случаи не вполне корректны, так как там характер аварии мог быть иной — с выбросом более крупных частиц или присутствием более крупных аэрозолей просто в атмосфере. Осаждение, очевидно, зависит от характера выброса, метеоусловий, а также от удельной активности рутения-106. Если рутений находился в виде газообразного RuO4 или в виде мелких аэрозолей с RuO2 с размером менее 1 мкм (что подтверждается ранее выполненными французскими исследованиями), то не обязательно будут происходить сильные загрязнения непосредственно вокруг точки выброса. В похожих авариях на предприятии Cogema во Франции наблюдали лишь осаждение части активности Ru-106 в районе выброса, а общий объем выброса не удалось установить (оценки разнятся в 45 раз), хотя выброс рутения-106 во Франции, очевидно, на многие порядки меньше, чем сейчас рассматриваемый.

11. В сообщении комиссии Росатома указывается, что «уровень загрязнения грунта рутением-106 ниже минимально детектируемого». Однако не указана ни площадь реально обследуемой территории, ни пределы детектируемого уровня с учетом вероятного неравномерного распределения и имеющегося высокого фона на территории ПО «Маяк». Так, согласно конкурсной документации от 29 ноября 2017 года на работы по очистке 30 тыс. м2 территории «Маяка», уровень загрязнения (предположительно цезием-137 и стронцием-90) вокруг «Маяка» составляет 0,6–2,0 мкЗв/ч (микрозивертов в час), что во много раз больше естественного фона в обычной местности, и частичное осаждение рутения-106 на таком высоком фоне могло быть не зарегистрировано.

12. Распределение загрязнения рутением-106 по большой территории можно объяснить следующим:

  • выделение рутения-106, очевидно, происходило постепенно в течение относительно длительного времени, а не в результате кратковременного выброса;
  • рутений мог находиться в газообразной форме или в виде мелких аэрозолей, что не способствует быстрому осаждению;
  • широкому распределению способствовали метеоусловия, когда ветер дул от Урала в Европу на юго-запад и запад, несколько меняя направление.

13. Гипотеза о том, что выброс может быть связан с разрушением спутника, совершенно необоснована. В принципе, рутений-106, как и многие другие радионуклиды, может использоваться в термоэлектрических источниках тока, однако реально на спутниках он не используется. Он имеет сравнительно низкий выход в продуктах деления урана (0,4%), низкую удельную активность (через 7 лет после облучения стабильный рутений присутствует в количествах, превышающих в 5 тыс. раз массу радиоактивного рутения). То, что рутений-106 имеет относительно небольшой период полураспада, не делает его привлекательным в этой области применения, так как гораздо более выгодно использовать, например, такие радионуклиды, как церий-144 и прометий-147, которые также имеют небольшие периоды полураспада. Кроме того, никакие падения спутников в этот период не зарегистрированы.

14. Гипотеза о том, что выброс произошел на территории Румынии или других европейских стран, представляется необоснованной. Во весь рассматриваемый период времени (25 сентября — 2 октября 2017 года) ветер дул с Южного Урала в сторону Румынии, Венгрии, Польши и других стран Европы, а не наоборот. Ядерный центр в Румынии действительно производит медицинские препараты, но на основе совсем других радионуклидов. Комиссия по контролю за радиоактивностью Румынии опровергла сообщения, что выброс рутения-106 может быть связан с деятельностью предприятий на ее территории.

15. Таким образом, весьма вероятно, что данный выброс рутения-106 произошел от переработки недостаточно выдержанного ОЯТ (1,5–7 лет) или из технологических растворов (рафинатов), образующихся в процессе переработки ОЯТ.

16. Несостоятельность аргументов, выдвинутых Росатомом и ПО «Маяк», тем не менее, не доказывает того, что выброс произошел именно на «Маяке». Для точного определения причин и источника выброса необходима независимая комиссия, которая могла ответить на все вопросы, учла бы все обстоятельства и аргументы.

Троицкий вариант

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *